An Introduction to NineML

Mike Hull <m.j.hull@sms.ed.ac.uk>

Slide 1

Overview

Introduction 3
Object Model 5
Python lib9ML 22

Slide 2

Introduction

* OML is a set of concepts underpinning a language for multiscale modelling
in neuroscience

* The architecture, conceptual design & specification are the result of an
INCF taskforce

* (Maps to an XML format)

* Multiple implementations of the concepts:

* Python
¢ Chicken Scheme

e LEMS/NeuroML support/intersection
* Python lib9ml is a Python API to create and manipulate 9ML models

Slide 3

Layers

* 9ML is composed of 2 layers:

* The Abstraction Layer
* The User Layer

. Specify the parameters 3. Generate & Run Simulator-Specific code

1. Define a parameterisable
and network connectivity

component

What are the equations

governing our neurons —_—

response to inputs?
dv/dt = (i_syn + i_inj)/Cm Cm=0.5, VThres=-40 Neuron NEST Octave/Matlaby....
IF V>VThres THEN EmitSpike

NineML

NineML
User Layer

Abstraction Layer

Slide 4

Object Model

Lots of Terms:

* Component

* Interface, Dynamics

* Regime, Transition

» StateVariable, TimeDerivative, StateAssignment
* OnEvent, OnCondition

e EventPort, AnalogPort, send/recv/reduce port

e Parameter

e Alias

Slide 5

Object Model Overview
Upper Bound on Complexity...

Ports:
——> analog_outputl
——+—> analog_output2
‘ T ‘ ~€—— analog_inputl
Parameters
¢ ‘ - @——— parameterl
@——— parameter2
@®——— parameter3
State Variables: state_varl, state_var2
Aliases: aliasl = state_varl * parameterl
analog_outputl = alias1 + analog_inputl
I:l ComponentClass RegimeGraph
l:l Interface Regime
l:l Dynamics OnEvent (Transition)

OnCondition (Transition)

Slide 6

ComponentClass

* A component represents some sort of dynamic object in a simulation

* A component could represent a channel, a neuron or a synapse
A 9ML component has internal dynamics and an external interface

ComponentClass

Dynamics Interface

—> analog_outputl
+—» analog_output2
[analog_inputl

parameterl

parameter2

—— parameter3

114

Slide 7

Interface

"how does the component communicate to the outside world?"

The interface to a component is composed of

* Parameters - Set once at the start of a simulation (compile-time)

* Ports - Used to communication between components during a
simulation (run-time)

Slide 8

Parameters

e Parameters allow us to define templated components in the
abstraction layer

* This means we do not need to repeat the same code for every
variation of the model

e For example, for an integrate-and-fire neuron: Reset-Voltage and
Firing-Threshold

e Parameters are set at the start of a simulation and remain constant
throughout

* [Parameter values are specified later by the User Layer]

Slide 9

Ports

e We are normally interested in not one object; but how a group of
components respond when connected together

* Ports allow components to communicate between each other during a
simulation

* There are 2 types:

» AnalogPorts - Communicate continuous values

* EventPorts - Communicate discrete events

* There are 3 port-modes; incoming (recv/reduce) or outgoing (send),
i.e. receiving or transmitting information

e outgoing ports are connected to incoming ports

Slide 10

Event Ports

* EventPorts send discrete events at a particular instant in time.

* For example:

* a neuron component could send an event when it fires an
action-potential

* then a synapse component could cause a post-synaptic current in
another neuron in response to receiving that event

* A send EventPort can be connected to any number of recv EventPorts

* Similarly, a recv EventPort can be connected to any number of send
EventPorts

Slide 11

AnalogPorts

* AnalogPorts transmit continuous values

* For example:

* A current-clamp component would have a send AnalogPort for the
current it produces.

* A neuron component could connect a recv AnalogPort for receiving
this external current

* A send AnalogPort can connect to any number of recv AnalogPorts

* BUT a recv AnalogPort can only be connected to one send AnalogPort.

Slide 12

Reduce Ports

In many cases, we may want to connect an incoming port to several send
ports.

For example, if we have neuron, we do not want to define a recv port on that
component for each possible external input current.

Instead, we use reduce ports; which is similar to a recv port, except that it can
be connected to multiple send ports and we define how the input from those
should be combined.

We currently support, + for summing inputs.

This allows us to write decoupled components; since we are not interested in
what or how many things we connect to; only that input-currents for example,
can be summed.

Slide 13

Dynamics
"how does the component component work internally??"

The dynamics block defines the behaviour of the component; in response to
the interface. A dynamics block is composed of:

e StateVariables

* A RegimeTransition graph composed of Regimes & Transitions

Slide 14

State Variables, Regimes & Transitions

* The dynamics of a component is defined by a set of state-variables;

» StateVariables can change either discontinuously or continuously as a
function of time.

* The changes happen in two ways:

* through TimeDerivatives, which define the continuous evolution
over time. e.g. dg/dt = -g/gtau

* through StateAssignments, which make discrete changes to a
StateVariable’s value.e.g.g=g + 5

Slide 15

RegimeTransition Graph

* A component can have different TimeDerivatives for the StateVariables at
different times.

* At any given time, a component will be in a certain Regime

* The TimeDerivatives controlling the StateVariables are specified by the
current Regime.

e [The state-space of a neuron is defined by its StateVariables and its
current Regime.]

Slide 16

RegimeTransition Graph

Slide 17

Transitions

Components move between Regimes via Transitions. There are 2 ways of
triggering a Transition:

* By a condition of the state variables, for example V > VThresh.

* By an InputEvent on a port.
When a Transition is triggered; three things can happen:

* A change of Regime. e.g. if the component is in regime3, and the
trigger for t3 is satisfied, then the component will move into regimel

» StateAssignments can take place

* The component can send OutputEvents
During a transition, multiple StateAssignments and OutputEvents can occur.

Slide 18

RegimeTransition Graph for IAF Component

Transition

Assign: tspike <= t
Assign: V <= vreset

Emit Event: spikeoutput
[subthresholdregime

dv/dt = (gl*(vrest - V)

+ ISyn)/(cm)

Transition

Slide 19

Aliases

* Aliases allow us to define local symbols in a ComponentClass:

* Intermediate variables.

* Reduce Duplication (E.g. Tau/Inf in Hodgekin-Huxley Channel).
* Recording of more complex expressions.

» Simplification of send AnalogPorts.

* Example:

minf = malpha / (malpha + mbeta)

mtau 1.0 / (malpha + mbeta)

malpha = (A alpha + B alpha *V) / (C alpha + exp((D_alpha +V)/E_alpha))
mbeta = (A beta + B beta *V) / (C _beta + exp((D beta +V)/E beta))

Slide 20

Object Model Recap

Ports:
——> analog_output1l
——+—>» analog_output2
~€——— analog_inputl
Parameters
@——— parameterl
@——— parameter2
@——— parameter3

l:l ComponentClass RegimeGraph
l:l Interface - Regime
_ Dynamics @ » OnEvent (Transition)

OnCondition (Transition)

Slide 21

Python lib9ML

Slide 22

What can it do for you?

* Simulation & Tool developers ?

Python lib9ml is an implementation of the 9ML Spec for:

* Loading and saving models from/to XML to/from Python objects.

* Object oriented API for traversing, querying and manipulating 9ML
object model

* A platform for code-generation
e Users/Modellers ?

* Intuitive, human read-writable API for model creation using 9ML
* NEST, NEURON and PyNN support (beta)

» Early adoptors and testers welcome!

Slide 23

Python lib9ML Model Construction

* Python lib9ML provides a concise syntax for constructing models directly
in python

e Automatic inference of StateVariables, Parameters and EventPorts

* Hierarchical components (Not standardised)

e allow us to build a single component, out of several smaller
components.

* |t allows us to separate their namespaces, producing simpler
models.

* This allows us to define subcomponents in a reusable way, (for
example synapses)

Slide 24

Example Regime Transition Graph

Transition

Assign: tspike <= t
Assign: V <= vreset

Emit Event: spikeoutput

+ ISyn)/(cm)

[d\//dt = (gl*(vrest - V)

Transition

Slide 25

Model Construction

import nineml.abstraction_layer as al
rl = al.Regime(
"dv/dt = (gl*(vrest - V) + ISyn)/(cm)",
name = "subthresholdregime",
transitions = al.On("V > vthresh",
do=["tspike = t",
"V = vreset",
al.OutputEvent('spikeoutput')],
to="refractoryregime"),)
r2 = al.Regime(
"dv/dt = 0",
name = "refractoryregime",
transitions = [al.On("t >= tspike + taurefrac"”,
to="subthresholdregime") 1,)

iaf = al.ComponentClass(name = "iaf",
regimes = [rl,r2],
analog ports = [al.SendPort("V"), al.ReducePort("ISyn",
)

reduce op="+")],

Slide 26

Manipulating the Object Model

Writing/Reading the object-model to XML
XMLWriter(iaf, 'iaf.xml')
loaded iaf = XMLReader('iaf.xml")

Creating a dot file of the RegimeTransition Graph
DotWriter(iaf, 'iaf rtg.dot')

Run simulations using PyNN ...

Slide 27

Finally..

* Thanks for listening

* Any questions?

Slide 28

	Introduction
	Layers

	Object Model
	Object Model Overview
	ComponentClass
	Interface
	Parameters
	Ports
	Event Ports
	AnalogPorts
	Reduce Ports
	Dynamics
	State Variables, Regimes & Transitions
	RegimeTransition Graph
	RegimeTransition Graph
	Transitions
	RegimeTransition Graph for IAF Component
	Aliases
	Object Model Recap

	Python lib9ML
	What can it do for you?
	Python lib9ML Model Construction
	Example Regime Transition Graph
	Model Construction
	Manipulating the Object Model
	Finally..

