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Introduction

* OML is a set of concepts underpinning a language for multiscale modelling
in neuroscience

* The architecture, conceptual design & specification are the result of an
INCF taskforce

* (Maps to an XML format)

* Multiple implementations of the concepts:

* Python
¢ Chicken Scheme

e LEMS/NeuroML support/intersection
* Python lib9ml is a Python API to create and manipulate 9ML models
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Layers

* 9ML is composed of 2 layers:

* The Abstraction Layer
* The User Layer

. Specify the parameters 3. Generate & Run Simulator-Specific code

1. Define a parameterisable
and network connectivity

component

What are the equations

governing our neurons —_—

response to inputs?
dv/dt = (i_syn + i_inj)/Cm Cm=0.5, VThres=-40 Neuron NEST Octave/Matlaby....
IF V>VThres THEN EmitSpike

NineML

NineML
User Layer

Abstraction Layer
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Object Model

Lots of Terms:

* Component

* Interface, Dynamics

* Regime, Transition

» StateVariable, TimeDerivative, StateAssignment
* OnEvent, OnCondition

e EventPort, AnalogPort, send/recv/reduce port

e Parameter

e Alias
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Object Model Overview
Upper Bound on Complexity...

Ports:
——> analog_outputl
——+—> analog_output2
‘ T ‘ ~€—— analog_inputl
Parameters
¢ ‘ - @——— parameterl
@——— parameter2
@®——— parameter3
State Variables: state_varl, state_var2
Aliases: aliasl = state_varl * parameterl
analog_outputl = alias1 + analog_inputl
I:l ComponentClass RegimeGraph
l:l Interface Regime
l:l Dynamics OnEvent (Transition)

OnCondition (Transition)
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ComponentClass

* A component represents some sort of dynamic object in a simulation

* A component could represent a channel, a neuron or a synapse
A 9ML component has internal dynamics and an external interface

ComponentClass

Dynamics Interface

—> analog_outputl
+—» analog_output2
[ analog_inputl

parameterl

parameter2

—— parameter3

114
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Interface

"how does the component communicate to the outside world?"

The interface to a component is composed of

* Parameters - Set once at the start of a simulation (compile-time)

* Ports - Used to communication between components during a
simulation (run-time)
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Parameters

e Parameters allow us to define templated components in the
abstraction layer

* This means we do not need to repeat the same code for every
variation of the model

e For example, for an integrate-and-fire neuron: Reset-Voltage and
Firing-Threshold

e Parameters are set at the start of a simulation and remain constant
throughout

* [Parameter values are specified later by the User Layer]
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Ports

e We are normally interested in not one object; but how a group of
components respond when connected together

* Ports allow components to communicate between each other during a
simulation

* There are 2 types:

» AnalogPorts - Communicate continuous values

* EventPorts - Communicate discrete events

* There are 3 port-modes; incoming (recv/reduce) or outgoing (send),
i.e. receiving or transmitting information

e outgoing ports are connected to incoming ports
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Event Ports

* EventPorts send discrete events at a particular instant in time.

* For example:

* a neuron component could send an event when it fires an
action-potential

* then a synapse component could cause a post-synaptic current in
another neuron in response to receiving that event

* A send EventPort can be connected to any number of recv EventPorts

* Similarly, a recv EventPort can be connected to any number of send
EventPorts

Slide 11



AnalogPorts

* AnalogPorts transmit continuous values

* For example:

* A current-clamp component would have a send AnalogPort for the
current it produces.

* A neuron component could connect a recv AnalogPort for receiving
this external current

* A send AnalogPort can connect to any number of recv AnalogPorts

* BUT a recv AnalogPort can only be connected to one send AnalogPort.
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Reduce Ports

In many cases, we may want to connect an incoming port to several send
ports.

For example, if we have neuron, we do not want to define a recv port on that
component for each possible external input current.

Instead, we use reduce ports; which is similar to a recv port, except that it can
be connected to multiple send ports and we define how the input from those
should be combined.

We currently support, + for summing inputs.

This allows us to write decoupled components; since we are not interested in
what or how many things we connect to; only that input-currents for example,
can be summed.
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Dynamics
"how does the component component work internally??"

The dynamics block defines the behaviour of the component; in response to
the interface. A dynamics block is composed of:

e StateVariables

* A RegimeTransition graph composed of Regimes & Transitions
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State Variables, Regimes & Transitions

* The dynamics of a component is defined by a set of state-variables;

» StateVariables can change either discontinuously or continuously as a
function of time.

* The changes happen in two ways:

* through TimeDerivatives, which define the continuous evolution
over time. e.g. dg/dt = -g/gtau

* through StateAssignments, which make discrete changes to a
StateVariable’s value.e.g.g=g + 5
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RegimeTransition Graph

* A component can have different TimeDerivatives for the StateVariables at
different times.

* At any given time, a component will be in a certain Regime

* The TimeDerivatives controlling the StateVariables are specified by the
current Regime.

e [The state-space of a neuron is defined by its StateVariables and its
current Regime.]
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RegimeTransition Graph
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Transitions

Components move between Regimes via Transitions. There are 2 ways of
triggering a Transition:

* By a condition of the state variables, for example V > VThresh.

* By an InputEvent on a port.
When a Transition is triggered; three things can happen:

* A change of Regime. e.g. if the component is in regime3, and the
trigger for t3 is satisfied, then the component will move into regimel

» StateAssignments can take place

* The component can send OutputEvents
During a transition, multiple StateAssignments and OutputEvents can occur.
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RegimeTransition Graph for IAF Component

Transition

Assign: tspike <= t
Assign: V <= vreset

Emit Event: spikeoutput
[ subthresholdregime

dv/dt = ( gl*( vrest - V)

+ ISyn)/(cm)

Transition
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Aliases

* Aliases allow us to define local symbols in a ComponentClass:

* Intermediate variables.

* Reduce Duplication (E.g. Tau/Inf in Hodgekin-Huxley Channel).
* Recording of more complex expressions.

» Simplification of send AnalogPorts.

* Example:

minf = malpha / (malpha + mbeta)

mtau 1.0 / (malpha + mbeta)

malpha = (A alpha + B alpha *V ) / (C alpha + exp( (D_alpha +V)/E_alpha) )
mbeta = (A beta + B beta *V ) / (C _beta + exp( (D beta +V)/E beta) )
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Object Model Recap

Ports:
——> analog_output1l
——+—>» analog_output2
~€——— analog_inputl
Parameters
@——— parameterl
@——— parameter2
@——— parameter3

l:l ComponentClass RegimeGraph
l:l Interface - Regime
_ Dynamics @ »  OnEvent (Transition)

OnCondition (Transition)
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Python lib9ML

Slide 22



What can it do for you?

* Simulation & Tool developers ?

Python lib9ml is an implementation of the 9ML Spec for:

* Loading and saving models from/to XML to/from Python objects.

* Object oriented API for traversing, querying and manipulating 9ML
object model

* A platform for code-generation
e Users/Modellers ?

* Intuitive, human read-writable API for model creation using 9ML
* NEST, NEURON and PyNN support (beta)

» Early adoptors and testers welcome!
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Python lib9ML Model Construction

* Python lib9ML provides a concise syntax for constructing models directly
in python

e Automatic inference of StateVariables, Parameters and EventPorts

* Hierarchical components (Not standardised)

e allow us to build a single component, out of several smaller
components.

* |t allows us to separate their namespaces, producing simpler
models.

* This allows us to define subcomponents in a reusable way, (for
example synapses)
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Example Regime Transition Graph

Transition

Assign: tspike <= t
Assign: V <= vreset

Emit Event: spikeoutput

+ ISyn)/(cm)

[d\//dt = ( gl*( vrest - V)

Transition

Slide 25



Model Construction

import nineml.abstraction_layer as al
rl = al.Regime(
"dv/dt = ( gl*( vrest - V) + ISyn)/(cm)",
name = "subthresholdregime",
transitions = al.On("V > vthresh",
do=["tspike = t",
"V = vreset",
al.OutputEvent('spikeoutput')],
to="refractoryregime"),)
r2 = al.Regime(
"dv/dt = 0",
name = "refractoryregime",
transitions = [ al.On("t >= tspike + taurefrac"”,
to="subthresholdregime") 1, )

iaf = al.ComponentClass( name = "iaf",
regimes = [rl,r2],
analog ports = [ al.SendPort("V"), al.ReducePort("ISyn",
)

reduce op="+")],
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Manipulating the Object Model

# Writing/Reading the object-model to XML
XMLWriter( iaf, 'iaf.xml')
loaded iaf = XMLReader('iaf.xml")

# Creating a dot file of the RegimeTransition Graph
DotWriter( iaf, 'iaf rtg.dot')

# Run simulations using PyNN ...
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Finally..

* Thanks for listening

* Any questions?
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