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Meural tissue simulation extends requirements and constraints of previous neuronal and neural
cireuit simulation methods, creating a tssue coordinate system. VWe have developed a novel
tissue volume decomposition, and a hybrid branched cable equation solver. The decomposition
divides the simulation into regular tissue blocks and distributes them on a parallel multithreaded
machine, The solver computes neurons that have been divided arbitranly across blocks, We
demonstrate thread, strong, and weak scaling of our approach on a machine with more than
40 nodes and up to four threads per node. Scaling synapses to physiological numbers had
Iittle effect on performance, since our decomposition approach generates synapses that are
almost ahways computed locally. The largest simulation included in our scaling results comprised
1 million neurens, 1 billon compartments, and 10 billion conductance-based synapses and gap
junctions. We discuss the implications of our ultrascalable Neural Tissue Simulator, and with
our results estimate requirements for a simulation at the scale of a human brain.

Keywiords: neural tissue, simulation, paralkel computing, distributed computing, Hodgkin-Huxley, numerical methods,
ultrascalable, whole-brain
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Neural Tissue Simulator: Goals

» Develop a simulator capable of testing mappings to
various machine architectures

— Parallel, Multithreaded

= Support for high level, abstract model definitions
and simulation specifications

— Model Graphs

= Extensible simulator, able to map arbitrary, domain
level models directly to a variety of data
arrangements and computational implementations

— Code Generation
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Overview

= Model Graph Simulator
— Model Definition
— Graph Specification

= Scaling

S
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Neural Tissue Simulator Workflow
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Model Graph Simulator: Infrastructure
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Model Graph Simulator: Infrastructure

Architectural Overview

» Language for expressing model state, computational phases,
communicated state, and model interfaces (MDL)

» Language for composing arbitrary parameterized graphs (GSL)
» Automatic partitioning into work units for multi-threaded execution (SMP)

* Dynamically constructed, simulation-specific MPI collective
communication for multi-process execution of computational phases (MPP)

o —
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Model Definition: Interfaces

@=0-0

Node NaChannel Implements ConductanceArrayProducer, ReversalPotentialProducer
{

double [] m;

double [] h;

double [] g;

double [] gbar;

double []* V;

Connection Pre Node (PSet.identifier=="compartment") Expects VoltageArrayProducer

{

VoltageArrayProducer.voltageArray >> V;

}

Connection Pre Node (PSet.identifier=="IC") Expects NaConcentrationProducer {
NaConcentrationProducer.Na >> Shared.Na_IC;

— i L
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Model Definition: Phases

InitPhases = { initialize };
RuntimePhases = { runl, run2, run3, run4, run5, runé };

NodeType HHJunction { predictState->runi,
correctState->run6 };

- Time Step

NodeType HHBranch { forwardEliminateCOO0->run2, o
forwardEliminateCO1->run3, A
backSubstituteCO1->run4, Multiphase Algorithm
backSubstituteCO0->run5 };

% March 2012 The Neural Tissue S
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Data Movement: Marshalling and Demarshalling
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SIMULATION APPROACH:

* Distribute tissue points
weighted by computational
complexity

» Scale out tissue simulation
across all three dimensions

* Maintain realistic neuron
and synapse densities at
each scale
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25%25x500 um
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8,000 Neurons
20%20 Minicolumns
500x500x500 ym

Graph Specification: Tissue Composition

Simulation
Element

Number

Processor
Balance

Neurons

1,024,000,

N/A

Branches

344,474,059

84,100 + 7,406

Junctions

208,947,659

51,012 + 4,026

Compartments

1,083,289,600

264,475 + 7,582

Na Channels

330,613,914

80,716 + 7,440

KDR Channels

330,613,914

80,716 + 7,440

AMPA
Synapses

8,186,972,360

1,998,772
720,155

GABAA
Synapses

2,255,068,948

550,553 *
169,064

Connexons

7,626,124

1,861 + 820

Tissue

1,024,000 Neurons

8x4x4 Columns
4x2x2 mm




v .I\//r"fF_Re!_séjarc I;)V ision /

Graph Specification: Contact Detection

MPI_alltoall MPI_allgather
Points/Neuron /0 MP1_alltoallw MPI_allgatherv
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Graph Specification: Contact Detection

* New algorithm optimized to run multithreaded on
Blue Gene/P’s 4-core compute nodes

» 25.5 billion contacts in 2.5 hours

* 4,096 nodes of Blue Gene/P

o —
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Graph Specification: Components Identities

E-type
cAD bAD dAD cFS bFS dFS c¢ST bST dST cIS biS IBS rBS tBS cAL dAL bAL cNA bNA dNA

= Each segment

describes itself y Contact Category:
i / ( [E-type & M-type], [E-type & M-type] )

= Segment key is ¥/ o .
compressed for efficient Ly = (106319 19
communication | 4

be identified, and its
neuron data accessed

%

1.layer
2.m-type
3.e-type
4.branch type
5.branch order

- |
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Graph View: Synapses and Channels
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Graph View: Synapses and Channels
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Next Steps: Inferior Olive

INalk Ica
«— NaFspikes Clear data constraints available for
single cell electrophysiological model
Ih de-activates Low threshold
Ca?* spike Oscillations generated by intrinsic

interplay between membrane currents

Subthreshold oscillations are not
driven by spike input, but instead
constrain and drive spike output

Action
potentials

, Ik INa
h

Erelin
b — SYSIENS]
) . . . . . p— Commguaion
T. Bal and D. McCormick, “Synchronized oscillations in the Inferior Olive are controlled by the
hyperpolarization-activated cation current |,”, J. Neurophysiol. 77:3145-3156, 1997.

— i L
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Modeling Calcium Dynamics in 1O neurons

InitPhases = { initialize };
RuntimePhases = { runl, run2, run3, run4, run5, runé };

NodeType HHVoltagelunction { predictState->runl,
correctState->run6 };

NodeType HHVoltage { forwardEliminateCO0->run2,
forwardEliminateCO1->run3,
backSubstituteCO1->run4,
backSubstituteCOO0->run5 };

NodeType CaConcentration { forwardEliminateCO0->run2,
forwardEliminateCO1->run3,
backSubstituteCO1->run4,
backSubstituteCOO0->run5 };

e
” .
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Graph View: Hybrid Voltage Solver
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Graph View: Hybrid Calcium Solver
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SIMULATED “MINICOLUMN”

NeuroMorpho.Org

Version 3.1, Reloased: 100108, Content: 4508 celis

S i Hagien | 5y ot 11pe SEMESY

Rigid Body Tissue Layout
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SIMULATED “MINICOLUMN” DEVELOPMENT

In collaboration with Mike Pitman, Protein Science & Molecular Dynamics
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Graph Specification: Compartment Variables

BRANCHTYPE

0 Voltage, Calcium
1 Voltage

2 Voltage, Calcium
3 Voltage, Calcium

COMPARTMENT_VARIABLE_COSTS 2
Voltage 1.0
Calcium 0.95

— i L

8 March 2012 The Neural Tissue S




rL/l M""'rR*eﬁséarch"l;)!’l/ i§-i’o / /

Graph Specification: Channels

BRANCHTYPE

0 Na [Voltage] KDR [Voltage] Cah [Voltage, Calcium] KCa [Voltage, Calcium]
1 Na [Voltage] KDR [Voltage]

2 Cah [Voltage, Calcium] KCa [Voltage, Calcium]

3 Cah [Voltage, Calcium] KCa [Voltage, Calcium]

CHANNEL_COSTS 4
Na 0.414243

KDR 0.254051

Cah 0.414243

KCa 0.359252

7 e
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Graph Specification: Synapses

BRANCHTYPE ETYPE
BRANCHTYPE ETYPE

10 1 0 AxAxGap [Voltage] 0.001
212 1 DenDenGap [Voltage] 0.001

ELECTRICAL_SYNAPSE_COSTS 2
AxAxGap 0.005309
DenDenGap 0.005309

BRANCHTYPE ETYPE

BRANCHTYPE ETYPE

112 0 GABAA [Voltage] [Voltage] 0.1667

1 GABAA [Voltage] [Voltage] 0.1667

0 GABAA [Voltage] [Voltage] 0.1667

0 AMPA [Voltage] [Voltage] 1.0

1 AMPA [Voltage] [Voltage] 1.0

0 AMPA [Voltage] [Voltage] 1.0 NMDA [Voltage] [Voltage, Calcium] 1.0

CHEMICAL_SYNAPSE_COSTS 2
AMPA 0.296407
GABAA 0.149978

1
1
1
1
1

12
13
02
02
03
HE

— i L

0" March 2012 The Neural Tissue Sir




IBM Research Division
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Neurons 16,000
AMPA 115,647,522
GABAA 44,352,919
Connexons 137,338
Synapses/Neuron 10,004
CEMDRITES

Time (ms)
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Neural Tissue Simulator Workflow
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Neural Tissue Simulation: Scaling

The question of axons...

M. Lévesque, S. Gagnon, A. Parent, and M. Deschénes, “Axonal Arborizations of
Corticostriatal and Corticothalamic Fibers Arising from the Second Somatosensory
Area in the Rat

33 March 2012 The Neural Tissue Simulat
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Neural Tissue Simulation: Scaling

The question of axons...

“...processors act like neurons and connections between processors act as axons...”

H. Markram. The Blue Brain Project. Nat Rev Neurosci, 7(2):153-160, Feb 2006.

" A g
- .
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Scalability

Traub et al., J Neurophysiol 93: 2194 2232, 2005
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Neural Tissue Simulation: Scaling

The question of axons...

= Failures of action potential propagation can occur at certain points
along an axon, introducing uncertainty surrounding the signaling role
of action potentials transmitted through otherwise reliable axons [1]

Electrical synapses between axons can initiate action potentials
without first depolarizing the axon initial segment [2]

Action potentials may be generated by a mechanism that depends
on the length of the axon (e.g., bursts of action potentials of a
particular duration may be generated when a calcium spike from the
cell body depolarizes an axon of a particular length [1])

[11A. Mathy, S. S. N. Ho, J. T. Davie, I. C. Duguid, B. A. Clark, and M. Husser. Encoding of oscillations by axonal bursts in inferior olive
neurons. Neuron, 62(3):388-399, May 2009.

[2] D. Schmitz, S. Schuchmann, A. Fisahn, A. Draguhn, E. H. Buhl, E. Petrasch-Parwez, R. Dermietzel, U. Heinemann, and R. D.
Traub. Axo-axonal coupling. a novel mechanism for ultrafast neuronal communication. Neuron, 31(5):831-840, Sep 2001.
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Neural Tissue Simulation: Network Bandwidth

NEURAL TISSUE
BLOCK INTERFACE
CORMLIMICATION:
&4 MB mimd

BLUE GENE/P
BISECTION
BANDWIDTH:
1.7-3.8 TB/s

i I=

BLLIE GEME/P
LItE
BANDWIOTH:
6.8 GRS

- s
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Neural Tissue Simulation

=
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Neural Tissue Simulation

=
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Model Graph Simulator:

|
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Previous Numerical Approaches
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Our Numerical Approach

- John Wagner, Manager IBM Research Australia /Computational Biology Co-laboratory

A SIMULTANECUSE BRANCH ORDER B SIMULTANEDUS COMPUTE ORDER E SIMULTANEOLS COMPUTE ORDER
FULLY IMPLICIT BY BRAMCH: EXPLICIT-IMPLICT BY CUT BRANCH EXPLECIT-IMPLICIT
j

/
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Graph View: Implicit Junction Solver
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Branch-Based, Implicit Junction Algorithm:
Phase Decomposition
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Graph View: Explicit Junction Solver
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Branch-Based, Explicit Junction Algorithm:

Phase Decomposition
Rempe and Chopp, 2006

Na Channels

K Channels

®
L1

"'\..\I\I\I\l \-\..\.
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|
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Graph View: Hybrid Solver

HH
Voltage
Junction

HH
Voltage

47 March 2012



| IBM Research Division

Numerics Scaling

G g
10 == Simulation (f) Modes, BGIP 512 10
== |nitialization (1) Heuirons 128,000
Explicit Branches 42 002575
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Synapsasaran 9,033

108 - 107
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Jaquinn

104 10%

0 1 2 3 4 5] B f a8
Maximum Compute Order
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Thread Scaling
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Synapse Scaling
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Weak Scaling

10°
— | Neurons/Node 2500
-E’.v Branches/Node 82,017 £2,222
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)
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